Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord.

نویسندگان

  • Angelo C Lepore
  • Ajay Bakshi
  • Sharon A Swanger
  • Mahendra S Rao
  • Itzhak Fischer
چکیده

Neural precursor cells (NPCs) are promising grafts for treatment of traumatic CNS injury and neurodegenerative disorders because of their potential to differentiate into neurons and glial cells. When designing clinical protocols for NPC transplantation, it is important to develop alternatives to direct parenchymal injection, particularly at the injury site. We reasoned that since it is minimally invasive, intrathecal delivery of NPCs at lumbar spinal cord (lumbar puncture) represents an important and clinically applicable strategy. We tested this proposition by examining whether NPCs can be delivered to the injured cervical spinal cord via lumbar puncture using a mixed population of neuronal-restricted precursors (NRPs) and glial-restricted precursors (GRPs). For reliable tracking, the NPCs were derived from the embryonic spinal cord of transgenic donor rats that express the marker gene, human placental alkaline phosphatase, under the control of the ubiquitous Rosa 26 promoter. We found that mixed NRP/GRP grafts can be efficiently delivered to a cervical hemisection injury site by intrathecal delivery at the lumbar cord. Similar to direct parenchymal injections, transplanted NRP/GRP cells survive at the injury cavity for at least 5 weeks post-engraftment, migrate into intact spinal cord along white matter tracts and differentiate into all three mature CNS cell types, neurons, astrocytes, and oligodendrocytes. Furthermore, very few graft-derived cells localize to areas outside the injury site, including intact spinal cord and brain. These results demonstrate the potential of delivering lineage-restricted NPCs using the minimally invasive lumbar puncture method for the treatment of spinal cord injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report

INTRODUCTION Intrathecal transplantation is a minimally invasive method for the delivery of stem cells, however, whether the cells migrate from the lumbar to the injured cervical spinal cord has not been proved in humans. We describe an attempt to track bone marrow-derived mesenchymal stem cells in a patient with a chronic cervical spinal cord injury. CASE PRESENTATION A 33-year-old Thai man ...

متن کامل

Intrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats

Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in consciou...

متن کامل

Minimally invasive delivery of stem cells for spinal cord injury: advantages of the lumbar puncture technique.

OBJECT Stem cell therapy has been shown to have considerable therapeutic potential for spinal cord injuries (SCIs); however, most experiments in animals have been performed by injecting cells directly into the injured parenchyma. This invasive technique compromises the injured spinal cord, although it delivers cells into the hostile environment of the acutely injured cord. In this study, the au...

متن کامل

Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury

Traumatic spinal cord injuries (SCIs) affect millions of people worldwide; the majority of whom are in the chronic phase of their injury. Unfortunately, most current treatments target the acute/subacute injury phase as the microenvironment of chronically injured cord consists of a well-established glial scar with inhibitory chondroitin sulfate proteoglycans (CSPGs) which acts as a potent barrie...

متن کامل

Intrathecal injection of bone marrow stromal cells attenuates neurologic injury after spinal cord ischemia.

BACKGROUND It has been shown that transplantation of bone marrow stromal cells (MSCs) into the ischemic brain improves functional outcome. We sought to investigate whether intrathecal injection of MSCs can attenuate neurologic injury of spinal cord ischemia. METHODS Rabbit MSCs were expanded in vitro and were pre-labeled with bromodeoxyuridine. Spinal cord ischemia was induced in rabbits by i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1045 1-2  شماره 

صفحات  -

تاریخ انتشار 2005